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Crown ether–tert-ammonium salt complex fixed as rotaxane
and its derivation to nonionic rotaxane
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Abstract

First rotaxane having tert-ammonium axle was prepared from tert-ammonium salt axle and dibenzo-24-crown-8-ether (DB24C8)
wheel, suggesting that tert-ammonium salt axle forms the corresponding threaded complex with a crown ether. Same rotaxane was
obtained quantitatively by N-methylation of sec-ammonium-type rotaxane. The tert-ammonium-type rotaxane was neutralized with
amine base to tert-amine-type rotaxane in 100% yield, indicating the first isolation of ‘nonionic’ amine-type rotaxane. The reversible
protonation and deprotonation of tert-amine-type rotaxane were achieved.
� 2008 Elsevier Ltd. All rights reserved.
Components such as sec-ammonium salt and crown
ether combine particularly well to yield a stable pseudoro-
taxane as a precursor of rotaxane.1,2 This type of rotaxane
can be readily obtained by a variety of synthetic methods,
among which the end-capping approach often results in a
high yield synthesis over 90%.3 Ammonium–crown ether
rotaxanes, therefore, have been used in various systems,
that is, molecular devices,4 polymeric materials,5 and so
on.6 The most reliable combination of sec-ammonium salt
and 24-crown-8-ether (DB24C8) is based on the particu-
larly efficient formation of a threaded complex, which is
extremely favorable for rotaxane synthesis.2 However,
tert-ammonium-type rotaxane has never been synthesized,
as opposed to sec-ammonium-type rotaxane. This is prob-
ably due to the fact that it is not generally believed that the
threaded complex formation between tert-ammonium salt
and crown ether leads to the formation of a stable pseudo-
rotaxane, and therefore, no complex formation has hith-
erto been reported, as far as we know. We have recently
succeeded in synthesizing rotaxane from tert-ammonium
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salt and crown ether. This is the first clear evidence of com-
plexation between these two components. Furthermore, it
has been found that tert-ammonium rotaxane is neutral-
ized to stable ‘nonionic’ and ‘free’ amine-type rotaxane.
This paper discloses the synthesis and characterization of
tert-ammonium-type and tert-amine-type rotaxanes, shed-
ding a new light on ammonium-type rotaxanes.

When a mixture of tert-ammonium salt 1 and DB24C8
was treated with 3,5-dimethylbenzoic anhydride in the
presence of a catalytic amount of tributylphosphane for
48 h in chloroform at room temperature, rotaxane 2�PF6

was isolated as a white solid in 3.0% yield by preparative
HPLC (Scheme 1).7

The structure of 2�PF6 was examined by NMR and IR.
The 1H NMR spectrum of 2�PF6 is shown in Figure 1c,
along with that of sec-ammonium-type rotaxane 3�PF6

3a

(Fig. 1d), which was prepared independently for compari-
son. The most evident spectral characteristic is the presence
of two kinds of split benzylic protons (d and e), which were
identified as diastereotopic protons generated from the
tert-ammonium structure. The appearance of the methyl
signal at around 2.9 ppm is also suggestive of a tert-ammo-
nium structure. These benzyl and methyl proton signals (d
and e) of 2�PF6 clearly shifted to downfield in comparison
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Scheme 1. Synthesis of rotaxane 2�PF6 having tert-ammonium axle and nonionic tert-amine rotaxane 4.
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Fig. 1. 1H NMR spectra (400 MHz, CDCl3, 298 K) of (a) DB24C8, (b) axle of tert-ammonium rotaxane 2�PF6, (c) tert-ammonium rotaxane 2�PF6, and
(d) sec-ammonium rotaxane 3�PF6.
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with those of the axle component (Fig. 1b). This is attrib-
uted to the effect of DB24C8 which surrounds the tert-
ammonium group. Thus, the wheel still lays around the
tert-ammonium nitrogen atom even in solution state,
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despite the fact that 2�PF6 has only one hydrogen atom at
the nitrogen atom capable of participating in hydrogen
bonding with the crown ether wheel. The typical absorp-
tion of PF6 anion (856 cm�1) as well as the ester carbonyl
absorption (1718 cm�1) was consistent with the proposed
structure.

Additional evidence to the isolation of 2�PF6 from 1 was
obtained by the direct N-methylation of sec-ammonium-
type rotaxane 3�PF6 by the Eschweiler–Clarke reaction. A
mixture of rotaxane 3�PF6, paraformaldehyde, and formic
acid in DMF was heated at 70 �C for 24 h (Scheme 1).
From the resulting mixture, a white solid product assigned
as tert-ammonium rotaxane 2�PF6 was collected in a quan-
titative yield.8

The spectroscopic data of the product obtained from
3�PF6 were completely consistent with that of rotaxane
2�PF6 obtained from tert-ammonium salt 1. Thus, the forma-
tion of 2�PF6 from 1 was also confirmed by the derivation
of 3�PF6 to 2�PF6. The preparation of rotaxane 2�PF6

from tert-ammonium salt 1 has quite an important signifi-
cance, even though the yield was low (3.0%),9 because the
actual isolation of 2�PF6 demonstrates that the threaded
complex is formed from tert-ammonium salt and crown
ether. Thus, the rotaxane system can be regarded as a
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Fig. 2. 1H NMR spectra (400 MHz, CDCl3, 298 K) of (a) tert-ammonium rota
of tert-amine rotaxane 4, and (e) DB24C8.
stabilizing system for labile species, since the unidentified
complex is fixed in a rotaxane form, as shown in the
present study (Fig. 1).

Meanwhile, neutralization of sec-ammonium-type
rotaxane to ‘nonionic’ or ‘free’ amine-type rotaxane has
never been attained so far,2,10 although a few dual and
multi cationic station-containing rotaxanes could be neu-
tralized. Namely it has been well known that rotaxane
having single sec-ammonium station cannot be neutralized.
We examined the neutralization of tert-ammonium-type
rotaxane 2�PF6, since the attractive interaction between
the wheel and axle components of 2�PF6 seemed to be
considerably weaker than that of 3�PF6.

An acetonitrile solution of 2�PF6 was treated with 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) at 70 �C to yield a
new product. This product was eventually determined to
be tert-amine-type rotaxane 4 whose yield was quantita-
tive.11 The structure of 4 was confirmed by 1H NMR spec-
tral analysis (Fig. 2b).

The spectral pattern of 4 shows significant differences
from that of 2�PF6, while it has marked similarities to that
of N-acetylated nonionic rotaxane 5,3 suggesting close
structural resemblance between 4 and 5. It has been
reported that the crown ether wheel of 3�PF6 moves from
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the N atom to the ester methylene by N-acetylation in both
solid and solution states.3 Thus, the present 1H NMR spec-
tral characteristics are fully consistent with the structure of
4 which lost its ionic character.

The structure of 4 was finally determined by X-ray crys-
tal structure analysis.12 The whole structure of 4, which is
very similar to that of 5,3 is confirmed by Figures 3 and
4. One of the important structural features of 4 is the posi-
tion of the crown ether wheel on the axle. The wheel stays
around the benzyl ester group in each rotaxane. This coin-
cides well with the 1H NMR spectral characteristics, that is,
the structure in solution state (Fig. 2). A typical signal com-
mon to both 4 and 5 is the benzylic proton signal (h)
appearing around 6 ppm, which is largely down field
shifted by the deshielding effect resulting from the wheel
translation caused by the neutralization of 2�PF6.

As stated above, the ‘neutralization’ which does not
occur in sec-ammonium-type rotaxane becomes possible
in tert-amine-type rotaxane. As a result, the neutralization
made possible the isolation of the first ‘free (neutral)’ or
Fig. 3. Molecular structures (a)–(d) (rotated along the axle) of tert-amine
rotaxane 4 obtained by the X-ray crystal structure analysis.12

Fig. 4. ORTEP views of (a) tert-amine rotaxane 412 and (b) N-acetylated
rotaxane 5.3
‘nonionic’ rotaxane. Since the quantitative transformation
of sec-ammonium-type rotaxane to tert-amine-type rotax-
ane via tert-ammonium-type rotaxane has been shown in
this study, the present conversion protocol is expected to
widely expand the potential utility of sec-ammonium-type
rotaxanes, which are most easily accessible.

In this study, we have shown novel aspects of ammo-
nium–crown ether-type rotaxane: (1) rotaxane is prepared
from tert-ammonium salt axle and DB24C8 wheel, clarify-
ing for the first time that the combination of tert-ammo-
nium salt and crown ether forms the corresponding
threaded complex;2 (2) N-methylation of sec-ammonium-
type rotaxane proceeds to give tert-ammonium-type rotax-
ane in 100% yield; (3) tert-ammonium-type rotaxane is
neutralized quantitatively with amine base to tert-amine-
type rotaxane, indicating the isolation of the first ‘nonionic’
amine-type rotaxane;2,10 (4) reversible protonation and
deprotonation of tert-amine-type rotaxane are achieved.
Thus, the results obtained here can markedly enhance the
potential utility of sec- and tert-ammonium rotaxanes.
Acknowledgments

This work was financially supported by the Grant-
in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology of
Japan (Nos. 18064008 and 19655013). The authors thank
Professor T. Ikariya for his contribution to X-ray crystal
structure analysis.
References and notes

1. (a) Kolchinski, A. G.; Busch, D. H.; Alocock, N. W. Chem. Commun.

1995, 1289–1290; (b) Ashton, P. R.; Cambell, P. J.; Crystal, E. J. T.;
Glink, P. T.; Menzer, S.; Philip, D.; Spencer, N.; Stoddart, J. F.;
Tasker, P. A.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1995, 34,
1865–1869; (c) Sutherland, I. O. Chem. Soc. Rev. 1986, 15, 15–63; (d)
Gokel, G. W. In Crown ethers and Cryptands; The Royal Society of
Chemistry: Cambridge, UK, 1991.

2. (a) Sauvage, J. P.; Dietrich-Buchecker, C. Molecular Catenanes,

Rotaxanes, and Knots; A Journey through the World of Molecular

Topology; Wiley-VCH: Weinheim, Germany, 1999; (b) Balzani, V.;
Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000,
39, 3348–3391; (c) Takata, T.; Kihara, N. Rev. Heteroatom Chem.

2000, 22, 197–218; (d) Kihara, N.; Takata, T. Yukigosei Kagaku

Kyokaishi (J. Synth. Org. Chem. Jpn.) 2001, 59, 206–218; (e) Schalley,
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